Groupe orthogonal d'un espace vectoriel euclidien de dimension 2 et de dimension 3

1 Groupe orthogonal d'un espace vectoriel euclidien

Dans ce paragraphe, E désigne un espace vectoriel euclidien de dimension $n \in \mathbb{N}^*$.

Définition 1.1

On appelle application orthogonale (ou isométrie vectorielle) de E toute application de E dans E qui conserve le produit scalaire :

$$\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle.$$

Notation 1.2

On note O(E) l'ensemble des applications orthogonales de E.

Théorème 1.3

Soit u une application de E dans E. Les assertions suivantes sont équivalentes :

- (i) u est orthogonale;
- (ii) u est linéaire et conserve la norme : $\forall x \in E, \, \|u(x)\| = \|x\|$;
- (iii) u est linéaire et transforme toute base orthonormale en une base orthonormale;
- (iv) u est linéaire et transforme une base orthonormale en une base orthonormale.

Corollaire 1.4

- (i) Une application orthogonale est bijective;
- (ii) Si $u \in O(E)$, alors : $\forall x, y \in E, \langle u(x), y \rangle = \langle x, u^{-1}(y) \rangle$.

Définition 1.5

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. On dit que A est une matrice orthogonale si les vecteurs de A forment une base orthonormée de E.

Proposition 1.6

- (i) $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice orthogonale si et seulement si A est inversible et $A^{-1} = {}^tA$;
- (ii) Si P est une matrice de passage d'une base orthonormée de E vers une autre base orthonormée de E, alors P est une matrice orthogonale.

Théorème 1.7

Soit F un sous-espace vectoriel de E.

- (i) Si F est invariant par une application orthogonale u, alors F^{\perp} est invariant par u et $u|_{F} \in O(F)$ et $u|_{F^{\perp}} \in O(F^{\perp})$;
- (ii) Réciproquement, si $v \in O(F)$ et $w \in O(F^{\perp})$, l'endomorphisme u tel que $u|_{F} = v$ et $u|_{F^{\perp}} = w$ appartient à O(E).

Proposition 1.8

 $(O(E), \circ)$ est un groupe.

Théorème 1.9

 $L'application \ \varphi \colon (O(E), \circ) \to (\{-1, +1\}, \times) \ d\acute{e} \\ \text{finie par } \varphi(u) = \det(u) \ \text{est un morphisme de groupes}.$

Remarque 1.10

 φ n'est pas bijective. En effet, notons u l'endomorphisme dont la matrice dans la base canonique de \mathbb{R}^2 est $A = \begin{pmatrix} 1 & 1 \\ 6 & 7 \end{pmatrix}$. $u \notin O(E)$ bien que $\det(u) = 1$.

Définition 1.11

- (i) $\operatorname{Ker}(\varphi)$ est appelé groupe spécial orthogonal de E (ou ensemble des applications orthogonales positives), noté SO(E) ou $O^+(E)$;
- (ii) On appelle ensemble des applications orthogonales négatives, noté $O^-(E)$ l'ensemble défini par $O^-(E) = O(E) \setminus SO(E)$.

Proposition 1.12

 $O^+(E)$ est un sous-groupe de O(E).

Théorème 1.13

Soient F et G deux sous-espaces vectoriels supplémentaires de E. La symétrie par rapport à F parallèlement à G est une application orthogonale si et seulement si $G = F^{\perp}$.

Définition 1.14

On appelle retournement une symétrie orthogonale par rapport à un sous-espace vectoriel de dimension n-2. Si n=3, un retournement est aussi appelé demi-tour.

Théorème 1.15

Soient $x, y \in E$ de même norme, $x \neq y$. Il existe une unique réflexion échangeant x et y. C'est la symétrie orthogonale par rapport à $H = (\mathbb{R}(x-y))^{\perp}$.

2 Cas de la dimension 2

Dans tout ce paragraphe, n=2.

Théorème 2.1

(i) Les matrices orthogonales sont de la forme
$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 ou $S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$;
(ii) $\forall \theta \in \mathbb{R}, R_{\theta} \in O^{+}(E), S_{\theta} \in O^{-}(E)$;
(iii) $\forall \theta, \theta' \in \mathbb{R}, R_{\theta\theta'} = R_{\theta}R_{\theta'}$ et $SO(E)$ est commutatif.

(ii)
$$\forall \theta \in \mathbb{R}, R_{\theta} \in O^+(E), S_{\theta} \in O^-(E)$$
;

(iii)
$$\forall \theta, \theta' \in \mathbb{R}, R_{\theta\theta'} = R_{\theta}R_{\theta'}$$
 et $SO(E)$ est commutatif

Définition 2.2

Les éléments de $O^+(E)$ sont appelées rotations vectorielles.

Proposition 2.3

Soit $u \in O(E)$. On note Inv(u) l'ensemble des éléments de E invariants par u. On a la classification

anironto	
suivante	

$\dim(\operatorname{Inv}(u))$	Nature de u
2	id_E
1	Réflexion
0	Rotation distincte de id_E

Théorème 2.4

La composée de deux réflexions est une rotation. Réciproquement, toute rotation peut s'écrire comme la composée de deux réflexions, l'une étant arbitrairement choisie.

Théorème 2.5

Si x et y sont deux vecteurs non nuls de E de même norme, alors il existe une unique rotation et une unique réflexion transformant x en y.

3 Cas de la dimension 3

Dans tout ce paragraphe, n=3.

Définition 3.1

Une rotation de E est un endomorphisme de E tel qu'il existe une droite D vérifiant :

- (i) $u|_D = id_D$;
- (ii) $u|_{D^{\perp}}$ est une rotation du plan D^{\perp} .

Si $u \neq id_E$, la droite D est unique et est appelée axe de la rotation.

Théorème 3.2 (forme réduite)

Toute application orthogonale u distincte de $-id_E$ et telle que $Inv(u) = \{0\}$ s'écrit de façon unique $u=s\circ r=r\circ s$, où r est une rotation d'axe D et s la réflexion par rapport au plan $P=D^{\perp}$. Réciproquement, si $r \neq id_E$, l'application $u = r \circ s = s \circ r$ définie précédemment vérifie $Inv(u) = \{0\}$.

Proposition 3.3

Soit $u \in O(E)$. On note $\mathrm{Inv}(u)$ l'ensemble des éléments de E invariants par u. On a la classification .

ı	survance.		
	$\dim(\operatorname{Inv}(u))$	$Nature\ de\ u$	
	3	id_E	
	2	réflexion (symétrie orthogonale par rapport à un plan P)	
	1	rotation d'axe D, distincte de l'identité	
	0	$r\circ s=s\circ r,$ où r est une rotation d'axe D et s la réflexion par rapport à D^\perp	

Théorème 3.4

La composée de deux réflexions $s_P \circ s_Q$ (par rapport aux plans P et Q) est une rotation d'axe $P \cap Q$ si $P \neq Q$ et l'identité sinon. Réciproquement, toute rotation r_D d'axe D et distincte de l'identité s'écrit comme produit de deux réflexions s_P et s_Q par rapports à des plans P et Q contenant D et dont l'une peut être choisie arbitrairement.